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ABSTRACT 

Motivation: Metal ions are essential for the folding of RNA 

molecules into stable tertiary structures and are often involved in the 

catalytic activity of ribozymes. However, the positions of metal ions 

in RNA 3D structures are difficult to determine experimentally. This 

motivated us to develop a computational predictor of metal ion sites 

for RNA structures. 

Results: We developed a statistical potential for predicting positions 

of metal ions (magnesium, sodium, and potassium), based on the 

analysis of binding sites in experimentally solved RNA structures. 

The MetalionRNA program is available as a web server that predicts 

metal ions for RNA structures submitted by the user. 

Availability: The MetalionRNA web server is accessible at 

http://metalionrna.genesilico.pl/. 

Contact: iamb@genesilico.pl 

1 INTRODUCTION 

RNA plays a key role in many biological processes. It takes 
part in almost every aspect of processing genetic information, 
including decoding codon triplets, alternative splicing, peptide 
bond formation, and the regulation of these mechanisms (Pyle, 
2002). The function of many RNA molecules is dependent on their 
three-dimensional structure (Holbrook, 2008). The RNA backbone 
is negatively charged. The neutralization of the electrostatic 
repulsion by the binding of cations is essential for the formation of 
compact tertiary structures. It has been shown in folding studies 
that tRNA stability increases remarkably in the presence of 
monovalent (especially Na+ and K+) and divalent (Mg2+) cations 
(Urbanke, et al., 1975). However, divalent Mg2+ cations are more 
effective in stabilizing the native structure of RNA (Romer and 
Hach, 1975; Stein and Crothers, 1976). The higher the charge 
density of the RNA, the higher the concentration of cations near 
the surface and the greater the entropic advantage in using divalent 
ones, because fewer cations are confined near the RNA. Thus, a 
small number of ‘strong’ Mg2+ binding sites may be responsible for 
the effective stabilization of RNA tertiary structure [reviews: 
(Draper, 2004; Draper, 2008; Serra, et al., 2002)]. 

                                                 
*To whom correspondence should be addressed at iamb@genesilico.pl 

Metal ions also serve as essential cofactors in many reactions 
catalyzed by ribozymes. The hammerhead ribozyme, group I and 
group II introns, as well as ribonuclease P (RNaseP) ribozymes are 
examples of catalytic RNA that need divalent cations to perform 
their functions [review: (Schnabl and Sigel, 2010)]. For example, 
the cleavage of a phosphodiester bond by the hammerhead 
ribozyme depends on the presence of metal ions that are required 
for both folding and activity (Sigurdsson and Eckstein, 1995).  

The formation of RNA-metal ion complexes occurs in an 
aqueous environment. The energy of electrostatic interactions of a 
cation with water molecules depends on its charge and radius. 
Mg2+ has a small radius (~0.72 Å) and can tightly organize six 
water molecules in an octahedral arrangement, followed by 
organization of further layers of water. Theoretical calculations 
combined with experimental analyses suggest a total hydration free 
energy for Mg2+ of -455 kcal mol-1 (Markham, et al., 2002). K+ is 
larger (radius ~1.38 Å), has a smaller charge, and it organizes eight 
or nine water molecules in a less ordered manner, with the 
hydration energy of -80 kcal mol-1 (Draper, et al., 2005).   

Three different binding modes of magnesium ions can be 
distinguished [reviews: (Draper, 2004; Draper, et al., 2005)]. First, 
partially dehydrated cations can interact with RNA directly, 
chelated by electronegative atoms, such as phosphate oxygens, 
creating very strong interactions. Second, fully solvated cations 
can be stably bound to RNA via one or two layers of water 
molecules. Third, cations may contribute to RNA stability without 
occupying discrete sites, in a diffuse manner, where they interact 
with the RNA only by electrostatic interactions, without making 
direct contacts or perturbing their hydration layers.   
 Despite the growing number of experimentally solved RNA 
structures, the positions of cations in these structures still cannot be 
easily determined. Mg2+, Na+, and H2O have 10 electrons each and 
can be distinguished only in high-resolution crystal structures. 
Hence, many bound cations can be easily mistaken for water 
molecules or may be missing from crystal structures. The positions 
of metal ions are also difficult to determine by NMR. This situation 
motivated us to develop a computational predictor which only uses 
information about the RNA structure to identify the most likely 
metal ion-binding sites in this structure.  
 The statistical approach has been applied with great success in 
prediction of protein and RNA structures and in prediction of metal 
ion-binding sites in protein structures, and is based on a solid 

Associate Editor: Prof. Anna Tramontano

© The Author(s) 2011. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Bioinformatics Advance Access published November 21, 2011
 by guest on January 27, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://metalionrna.genesilico.pl/
http://bioinformatics.oxfordjournals.org/


2 

probabilistic framework (Hamelryck, 2009). The basic assumption 
of this method is that the free energy associated with a given 
molecular interaction is strictly correlated with the relative 
frequency by which this interaction occurs among known 
structures. Here we present the MetalionRNA tool that employs an 
anisotropic knowledge-based potential to predict metal ion-binding 
sites in three-dimensional structures of RNA. 
 

2 METHODS 

2.1 Preparation of input structures 

To generate a knowledge-based potential and test MetalionRNA, a 
five-fold cross-validation test was performed using RNA-metal ion 
complexes. We used a representative set of 113 crystallographically 
determined structures containing RNA and metal ions (including structures 
of e.g. protein-RNA complexes), available from the Protein Data Bank 
(PDB). Since the resolution of crystallographic structures is a key factor for 
an accurate determination of the identity and position of cations, we only 
used structures with a resolution higher than 2.0 Å for Mg2+ and higher than 
3.0 Å for K+ and Na+ as only the higher resolution limit allowed us to 
collect a sufficient number of structures (Supplementary Table S1). For 
groups of RNAs with a sequence 
identity > 90% we used only one structure with the highest resolution. For 
residues with more than one alternative conformation we used the first 
variant. We intended to take into account only cations interacting 
exclusively with RNA atoms, whose binding is not caused by other 
molecules. Therefore, we excluded metal ions closer than 9 Å to any atom 
other than RNA, water, or another cation. 

For additional tests of MetalionRNA we used a set of 116 
crystallographically determined structures containing DNA and Mg2+ 
cations, with a resolution higher than 3.0 Å (for PDB codes, see 
Supplementary Table S1). Like with RNA, for groups of DNA molecules 
with sequence  identity > 90% we only used one structure with the highest 
resolution. For residues with more than one alternative conformation we 
used the first variant. 

2.2 Compilation of an anisotropic statistical potential  

Klebe et al. developed an isotropic statistical potential for the 
prediction of protein-ligand interactions (Gohlke, et al., 2000). We applied 
this approach to create a distance and angle dependent anisotropic potential 
describing interactions between metal ions and RNA atom pairs. 
An n-particle correlation function g(n)(d1,α1;….dn, αn) is translated into a 
knowledge-based potential W(n)(d1, α1;….dn, αn) via the following equation: 

 
W(n)(d1, α1;….dn, αn)=-RTln g(n)(d1, α1;….dn, αn) 

 
where g(n) indicates the observed frequency of contacts of a cation c with all 
adjacent atom pairs [a, b] (d is the distance between cation and atom b; α is 
the angle (a,b,c)), and W(n) indicates the potential for a given position. We 
derived the function g(n)(d1, α1;….dn, αn) from crystal structures by sampling 
the frequencies of RNA atom pair and metal ion contacts.  
 The maximum radius of interaction between an RNA atom pair and a 
metal ion, to be considered for the statistical potential, was limited to 9 Å. 
This radius directly influences the specificity of the potential. A short 
distance emphasizes specific interactions between cations and the atoms of 
its binding site. On the other hand, a generous threshold allows to take 
indirect long-distance interactions into account, e.g. those mediated by 
solvent molecules. For example the Klebe group developed a potential for 
short distances of up to 6 Å (Gohlke, et al., 2000), and another group  
applied a larger threshold of 12 Å in their studies of protein-ligand 
interactions (Muegge and Martin, 1999). We chose a medium threshold 
value, since we wanted to cover highly specific direct RNA-cation contacts, 
as well as water-mediated interactions. 

2.3 Anisotropic contact statistics based on atom pairs 

We based our predictor of RNA-metal ion interactions on contacts 
formed by cations with oxygen and nitrogen atoms that are known to make 
the strongest contribution to metal-binding. First, we defined a list of atom 
pairs [a, b] in nucleotides, of which b is an O or N atom that may directly 
interact with a cation, and a is covalently bound to b (Table 1).  

 
Ribose/phosphate 

backbone 
Adenine 

side chain 
Guanine 

side chain 
Cytosine 
side chain 

Uracil 
side chain 

P, OP1 C2, N1 C2, N1 C2, N3 C2, N3 
P, OP2 C2, N3 C2, N2 C2, O2 C2, O2 
P, O5′ C4, N3 C2, N3 C4, N3 C4, N3 

C1′, O4′ C5, N7 C4, N3 C4, N4 C4, O4 
C2′, O2′ C6, N1 C5, N7   
C3′, O3′ C6, N6 C6, N1   
C4′, O4′ C8, N7 C6, O6   
C5′, O5′  C8, N7   

Tab. 1.  RNA atom pairs used to derive RNA-ion contacts. 
 

For posttranscriptionally modified nucleotides identified by our in-house 
program ModeRNA (Rother, et al., 2011), we took into account only the 
pairs [a, b] that were chemically identical to those in the unmodified 
‘parent’ nucleotides [see the MODOMICS database (Dunin-Horkawicz, et 
al., 2006) for details of RNA modification pathways]. Second, to derive 
contact statistics, all RNA structures were scanned for the presence of metal 
ions within a 9 Å sphere of O or N atoms (all possible atoms b). For each 
identified cation c, its distance d to the respective atom b, and the angle α 
(a, b, c) were calculated. Thus, the relative position of a cation to a pair [a, 

b] can be described by a distance d and an angle α. To generate statistics 
from a set of measured values for d and α, they were discretized by 
statistical binning, using steps of 0.25 Å and 5º and thus creating a radial 
grid R. Figure 1 illustrates the principle of deriving the statistics for cations 
around an RNA atom pair [P, OP2]. Next, the counts per bin were 
normalized, since the spatial units defined by discrete steps of d and α had 
different sizes (the bin volume is dependent on the distance and angle). 
Accordingly, we divided the count of cations obtained from each d, α pair 
by the corresponding volume V of the radial grid R bin.  In order to avoid 
overrating the contribution of couples of atom pairs [a, b] in which the 
same atom b is present twice (endocyclic N atoms of nucleobases and O4′ 
and O5′ atoms in the backbone e.g. [C2, N3], [C4, N3]), their relative 
weights were assigned to 0.5, compared to pairs with a unique atom b.   

 

3 IMPLEMENTATION 

3.1 Algorithm for prediction of metal ion positions 

We implemented a grid-based function to calculate the potential for 
predicting metal ions in a target structure. The most important advantage of 
using a grid is that the discretization of space obviates the need to solve the 
potential function analytically, and allows mapping of the statistical data 
into well-defined portions of space. A grid-based approach has been 
successfully applied in small molecule docking, for instance in the 
AutoDock program (Goodsell, et al., 1996). In MetalionRNA, the search 
space was divided into a cubic grid C with a grid width of 0.25 Å (or of 
0.5 Å). We chose these values on the basis of the minimal distance of 
chelated cations in contact with RNA, such that at least a few grid cells are 
between an RNA atom and a cation. For a larger grid width of the cubic 
grid C, the statistics would be biased by the cell boundaries, negatively 
affecting the prediction quality. On the other hand, the calculation time and 
memory usage grow with the third power to the inverse grid width, without 
much influence on the prediction quality (section ‘Results; MetalionRNA 
predicts metal ion with high accuracy’). 0.25 Å and 0.5 Å is less than the 
shortest bond, but big enough to run MetalionRNA calculations in a 
reasonable time. To avoid unnecessary calculations, the value of the 
potential in the target structure is calculated for cells of grid C around the 
previously defined RNA atom pairs only. 
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Fig. 1. Schematic views of the radial grid R used for deriving contact statistics for RNA atom pairs [a, b] in contact with cation c. The grid used for counting 
uses radial steps of 0.25 Å and 5º around atom b (an O or N atom) and a (covalently bound to b). A. Statistics of cation presence. For each cation, its distance 
d to the respective atom b, and the angle α (a, b, c) are calculated. The contact statistics derived for the RNA atom pair [P, OP2] and Mg2+ ions are shown in a 
grey scale (the more Mg2+ in a given bin, the darker the area). B. The diagram shows the distribution of values for a normalized potential derived from 
contact statistics (panel A) for the RNA atom pair [P, OP2] and Mg2+ ions (the darker the area, the higher value of the potential for the given bin). The three 
possible states of magnesium binding to RNA (Draper, 2004) are represented by the three peak tuples of the darkest areas. The first peak tuple (1) 
corresponds to Mg2+ chelated and partially dehydrated by phosphate groups of RNA. The second peak tuple (2) corresponds to the water-mediated state. The 
third peak tuple (3) represents the situation where the Mg2+ ion remains hydrated and interacts with the RNA via a layer of water molecules. 

For each RNA atom pair [a, b] (of which b is an O or N atom and a is 
covalently bound to b; see Table 1) the program computes the value in all 
cells of grid C within the radius of 9 Å around the atom b. Since cations 
cannot overlap with RNA atoms, all cells of grid C that are ‘occupied’ by 
RNA atoms, i.e. are within the van der Waals radius of an RNA atom, are 
excluded from the computation. Subsequently, the anisotropic potential 
value W(n) is calculated for all ‘unoccupied’ cells. The potential W(n) is 
additive for cells of grid C in a distance of 9 Å from more than one RNA 
atom pair. Finally, all cells of grid C are sorted according to their W(n) 
value. For the top-scoring cells of grid C, all cells within a radius 
corresponding to half of the minimal distance between two cations of the 
same type (the default value was derived from known RNA structures, see 
Supplementary Table S1 for PDB codes) are examined. The radius of the 
new candidate cation cannot overlap with the radius of a previously 
proposed cation with a better score. If this condition is fulfilled, 
MetalionRNA places a cation in the center of the top-scoring cell, 
calculates the sum of W(n) of the cells and removes the cells covered by the 
new cation from further consideration. 

Figure 2 illustrates the idea of calculating the potential for grid C, 
resulting from the presence of two RNA atom pairs [P, OP2], and 
identifying the most likely positions of cations. This procedure is repeated 
until a default or user-defined number of preferred cation positions is 
determined. The default value depends on the number of residues in the 
target structure. We calculated an average number of metal ions per 
nucleotide from the representative set of 113 crystallographically 
determined RNA-metal ion complexes (Supplementary Table S1) and in 
our calculations we generate by default the average number of metal ions 
plus one. 

 
Fig. 2. A schematic view of the cubic grid C used for deriving the potential 
for two [P, OP2] pairs. Only one layer of grid cells is represented and for 
simplicity we consider that all atoms are within this single layer. The 
potential W(n) is additive for cells < 9 Å from more than one OP2 atom. (the 
darker the area, the higher value of the potential for the given grid cell). 
MetalionRNA places the center of a predicted cation in the the grid cell 
with the highest value, calculates the sum of W(n) of cells covered by the 
cation introduced and removes these cells from further consideration. 
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3.2 Cross-validation 

 We employed a cross-validation procedure for all three sets of PDB 
structures (containing Mg2+, Na+ and K+) (see Supplementary Table S1 for 
PDB codes). We randomly split the PDB structures into five subsets and 
carried out a fivefold cross-validation, using one of the subsets for testing 
and the other four for training the potential. This approach ensures that the 
same cation binding sites are not used for training and testing. The results 
of the complete cross-validation test for each of the structure subsets were 
summed up to estimate the prediction accuracy. We calculated the true 
positive rate (TPR) and the false positive rate (FPR) defined as: 

 
TPR = TP/P 

FPR = FP/N 

 

where TP (true positives) is the number of predicted cation positions within 
a cut-off distance d from the true position in a structure from the test set 
(i.e. predicted cations that are close to the experimentally observed ones), 
P (positives) is the total number of cations observed in the crystal 
structures, FP (false positives) is the number of predicted cations that are 
far (beyond the distance cut-off d) from the cations in the crystal structures, 
and N (negatives) is the maximum number of cations that can be predicted 
for a given structure in the space within 9 Å from any O or N RNA atom 
considered as an ‘ion-binder,’ minus P. We analyzed the accuracy of the 
predictor for a series of distance cut-offs and illustrated the results in the 
form of receiver operating characteristics (ROC) plots (Fawcett, 2006). The 
area under the ROC curve (AUC) was calculated to assess the accuracy of 
MetalionRNA. 

4 RESULTS 

 We developed MetalionRNA, a computational method for the 
prediction of metal ion binding sites in RNA 3D structures, using a 
statistical potential and a grid-based calculation approach. The 
potential is based on the analysis of known metal ion binding sites 
present in 113 RNA structures. As an input, MetalionRNA takes an 
RNA 3D structure in the PDB format, and returns PDB files with 
the calculated RNA potential surface, and the coordinates of 
cations predicted for the target RNA structure.  

4.1 Web Server 

 To make our method easily available to the research 
community, we developed a web server available at 
http://metalionrna.genesilico.pl (server mirror is available at 
http://metalionrna.amu.edu.pl). The submission form accepts an 
RNA structure only in the PDB format. Every other file format is 
rejected and the server displays an adequate error message. One 
can specify the cation type, the number of cation positions 
expected to bind to the query structure, the minimal distance 
between predicted cations, width of the cubic grid, the ionic radius 
of the cation or use default values. The default cation is Mg2+. The 
default number of predicted ions is calculated on the basis of the 
number of residues in the target structure; the minimal default 
distance between predicted cations is the one observed in known 
structures (Supplementary Table S1), and the default width of the 
cubic grid C is 0.5 Å. The results returned by the server are 
available as a separate web page, including a file with the predicted 
cation positions in text and PDB formats, a script to display the 
predicted cations in the PyMOL viewer, and a PDB file containing 
the target structure with the calculated potential surface. The page 
with the output files is kept on the server for one week.  
 The time required for MetalionRNA to return predictions 
depends mainly on the size of the molecule. Currently we use a 

simple queuing system that allows running one prediction at a 
time. For a tRNA molecule (PDB id: 1EHZ) 76 nt long, with the 
default number of ten Mg2+ hits, it takes about 5 minutes to obtain 
the results. The server was implemented in Python using the 
Django web framework. 
 One of the weaknesses of the statistical approach is the 
relative paucity of high-resolution crystal structures of RNA 
molecules with accurately determined cation binding sites. The 
MetalionRNA web server once per week (every Saturday at 12 
p.m. Central European Time) downloads structures released in the 
PDB that have resolution better than 2 Å. RNA structures 
containing Mg2+, Na+ or K+ cations that fulfill the conditions 
described in the section ‘Preparation of input structures’ are added 
to the original training set and the statistical potential is 
recalculated. In time, the structures with the resolution worse 
between 2 and 3 Å will be outnumbered by those with the 
resolution better than 2 Å, hopefully leading to a constant 
improvement of the potential. The MetalionRNA website allows 
the user to select whether to perform predictions with the original 
potential described in this article or with the updated one. 

4.2 RNA – metal ion statistical preferences 

 To calculate the anisotropic statistical potential for RNA-ion 
contact prediction, we derived statistics for the most common 
cations from 50 RNA structures containing Mg2+ (182 binding 
sites), 25 RNA structures containing Na+ (88 binding sites) and 38 
RNA structures containing K+ (123 binding sites). The graph 
showing the statistical potential in Figure 1B depicts the preferred 
interaction geometries for direct contacts and solvated Mg2+ ions. 
The distribution function for the RNA atom pair [P, OP2] and Mg2+ 
has three peak tuples (the darkest areas). The peak tuples 
correspond to the three possible states of magnesium binding to 
RNA (Draper, 2004). The first peak tuple is present at a distance of 
about 2 Å, with an acute angle of 15-60º. It corresponds to 
magnesium ions chelated and partially dehydrated by phosphate 
groups of RNA. In this state the Mg2+ ion interacts with RNA 
atoms directly. The second peak tuple is at a distance of 4-5 Å with 
a bimodal angle distribution. Acute angles (15-90º) correspond to 
the water-mediated state, in which the cation retains one layer of 
hydrating water molecules that in turn interact with the RNA 
atoms. Obtuse angles (120º and higher) correspond to cations 
chelated with the OP2 atom, and the same Mg2+ ions appear as the 
first peak (in the distance of about 2-2.5 Å) for the [P, OP1] pair 
(data not shown). Finally, the third peak tuple corresponds to a 
distance of 6-7 Å and represents the situation where the Mg2+ ion 
remains hydrated and interacts with the RNA via a layer of water 
molecules. For these distances, angles of 30-60º are predominant. 

4.3 MetalionRNA predicts metal ion with high accuracy  

In order to assess the accuracy of MetalionRNA, a five-fold 
cross-validation test was performed using RNA-metal ion 
complexes (Supplementary Table S1). We used a cubic grid C with 
edge width of 0.25 Å and 0.5 Å, a Mg2+ ionic radius of 0.75 Å and 
a minimal distance between predicted cations of 1.5 Å. The results 
for the cubic grid of 0.5 Å edge width are illustrated in the form of 
ROC plots (RNA-Mg2+ in Figure 3A, RNA-Na+ in Figure 3B, and 
RNA-K+ in Figure 3C).  
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Fig. 3. Receiver operating characteristic (ROC) curves to assess the classification performance of MetalionRNA with the width of 0.5 Å for the cubic grid C 
using A. the RNA-Mg2+ data set B. the RNA-Na+ data set C. the RNA-K+ data set D. the DNA- Mg2+ data set and various cut-off distance values (the 
maximum distance between a predicted and a real metal ion in which the prediction is marked as correct). In the big picture overall graph is shown, in the 
small picture only a range between 0 and 0.2 Å is illustrated on a logarithmic scale. 

The area under the ROC curve (AUC) values that describe the 
degree of successful predictions for the Mg2+ ions were calculated 
for the following cut-off distances (the maximum distances 
between a predicted and a real metal ion, for which the prediction 
was regarded as correct): 0.72, 0.75, 1.0, 1.5, 2.0 and 3.0 Å. The 
ionic radius of Mg2+ is 0.72 Å, the other values are multiples of 
grid width of C. Using these values, the AUC values for the Mg2+ 
ions were 50%, 56%, 81%, 93%, 95%, 96% for the grid C of 0.25 
Å and 62%, 62%, 81%, 95%, 96%, 97% for the grid C of 0.5 Å. 
The solid line in Figure 3A illustrates predictions that lie within the 
ionic radius of Mg2+ (0.72 Å) and hence are within the space 
occupied by the cation in the crystallographic model.  

For Na+ ions, AUC values were calculated to be 43%, 82%, 
87%, 91%, 93% (0.25 Å grid) and 47%, 78%, 85%, 88%, 91% (0.5 
Å grid) for the cut-off distances 1.0, 1.5, 2.0, 3.0 and 4.0 Å, 
respectively. The ionic radius of Na+ is 1.0 Å. Predictions for Na+ 
are slightly less accurate than those for Mg2+, most likely because 
of the smaller number of cations in the training dataset. The solid 
line in Figure 3B illustrates predictions within the ionic radius of 
Na+ (1.0 Å). For K+ ions, AUC values were 54%, 61%, 84%, 96%, 
97% (0.25 Å grid) and 54%, 61%, 81%, 97%, 98% (0.5 Å grid) for 
the cut-off distances 1.38, 1.5, 2.0, 3.0 and 4.0 Å, respectively. The 
ionic radius of K+ is 1.38. Figure 3C shows predictions for K+. 

 We also conducted the predictions and ROC analysis for a set 
of DNA-Mg2+ complexes (Figure 3D) using the statistical potential 
derived from RNA-Mg2+ PDB complexes. Interestingly, our 
method works for DNA structures that were not considered in the 
training of the potential: the area under the ROC curve 
corresponding to the cut-off distances of 0.72, 0.75, 1.0, 1.5, 2.0 
and 3.0 Å was calculated to be 44%, 49%, 74%, 90%, 91%, 93% 
(for the grid C of 0.25 Å) and 56%, 56%, 72%, 88%, 91%, 93% 
(for the grid C of 0.5 Å) respectively. These results are only 
slightly worse than those for RNA and indicate that our approach 
captured a general aspect of the metal ion binding by nucleic acids. 
 FEATURE is another method for predicting metal ions in 
RNA structures (Banatao, et al., 2003). It applies supervised 
learning on a training set consisting of positive and negative 
examples of Mg2+ ion binding sites to create a statistical model that 
describes the micro-environments surrounding site-bound and 
diffusely bound cations. To create a statistical model, 126 physico-
chemical and structural properties that influence or take part in 
RNA-Mg2+ ion interactions were used, and the method was tested 
on a 58 nt fragment of Bacillus stearothermophilus 23S rRNA 
(PDB code 1HC8). To compare the performance of MetalionRNA 
with that of WebFEATURE, we made predictions for this structure 
using our default settings, as well as after retraining our potential 
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on the FEATURE training set. 
 Table 2 and Figure 4 summarize predictions for seven Mg2+ 
ions present in the 1HC8 structure. MetalionRNA calculated that 
for the molecule of that size, six Mg2+ ions are expected to be 
observed in a crystal structure solved under ’average’ conditions, 
hence the six top-scoring predictions are considered as strong bets, 
and further positions in the ranking correspond to alternative, low-
confidence sites, potentially occupied e.g. at higher Mg2+ 
concentrations. The six predictions reported with top scores by 
MetalionRNA with the default potential included four out of the 
seven Mg2+ ions, identified with accuracy of 0.6-1.9 Å. The 
remaining ions were predicted with ranks 10, 13, and 29. Using a 
potential calculated from the FEATURE training set, MetalionRNA 
predicted only two of the seven ions at the first six positions of the 
ranking, with accuracy of 0.8 and 0.6 Å respectively. The 
remaining five ions were ranked at positions 8, 9, 21, 29, and 33. 
FEATURE correctly identified only two site-bound Mg2+ ion 
positions within its seven top-scored predictions with accuracy of 
1.5 and 3.6 Å, respectively. The diffuse ions were all scored 
relatively poorly by FEATURE, all outside the top positions of its 
ranking.  
 

Mg2+  

(atom 
no.) 

MetalionRNA 
 

FEATURE 
 

deviation [Å],   
rank out of 224  

*out of 9 
 

MetalionRNA 
training set: 

deviation [Å],  
rank (out of 224) 

FEATURE  
training set 

deviation [Å], 
rank (out of 224) 

1159 0.8 Å (1) 0.8 Å (1) 1.6 Å (15), 0.4 Å (58) 

1160 1.9 Å (6) 1.7 Å (33) 0.6 Å (17), 2.0 Å (8) 

1161 2.9 Å (29)  3.7 Å (29) 1.5 Å (102) 

*1163 0.6 Å (3) 0.6 Å (4) 1.5 Å (*5) 

1164 1.4 Å (2) 1.1 Å (21) 0.7 Å (181), 1.6 Å (88) 

*1167 3.8 Å (10) 1.1 Å (8) 3.6 Å (*2) 

1172 3.2 Å (13) 3.4 Å (9) 2.5 Å (202) 

 

Tab. 2. A list of Mg2+ ions in the 23s rRNA structure (PDB ID: 1HC8) for 
which predictions using MetalionRNA and FEATURE were done. The first 
column from the left lists real Mg2+ ions’ identifiers as labelled in the PDB 
file 1HC8. The site-bound Mg2+ ions are labelled with an asterisk. Column 
2 describes the predictions made by MetalionRNA using the Mg2+ training 
set (Supplementary Table S1). Column 3 describes the MetalionRNA 
predictions made using statistical potential derived from the FEATURE 
training set. In both columns, the first value is a prediction distance to the 
respective Mg2+ ion, the value in the brackets is the prediction rank by 
score with respect to the total number of all generated binding sites. 
Column 4 contains the predictions made by FEATURE. The first value is a 
prediction distance to the respective Mg2+ ion, the value in the brackets is 
the prediction rank by score with respect to the total number of all hits 
above the cut-off score (for details see (Banatao, et al., 2003)). 
 
 MetalionRNA with both variants of the potential were able to 
identify four out of five diffuse Mg2+ ions much better than 
FEATURE. The only exception was Mg2+ ion 1160, for which 
FEATURE found a more accurate match, but only at the 17th 
position of the ranking, while MetalionRNA reported a reasonable 
prediction at the 6th position of its ranking (i.e. above the default 
threshold). Predictions for two of the diffuse ions (1161 and 1172)  
were reported with relatively low scores by both methods. 
MetalionRNA also predicted one of the two site-bound Mg2+ ions 

(*1163) with very high accuracy and high position in the ranking 
(using our training set: 0.6 Å, rank 3, using the FEATURE training 
set: 0.6 Å, rank 4). For this cation, FEATURE performed only 
slightly worse (accuracy 1.5 Å, rank 5 in a separate prediction for 
site-bound ions alone). The second site (*1167) was predicted by 
MetalionRNA with accuracy of 3.8 Å (rank 10) and 1.1 Å (rank 8) 
for the two training sets, while FEATURE reported it with 
accuracy 3.6 Å, rank 2 (again, in a separate prediction for site-
bound ions). Hence, both methods performed similarly well for 
site-bound ions. Summarizing, MetalionRNA was able to identify 
four out of seven true Mg2+ sites in the 1HC8 structure with just 
two false positives, while FEATURE identified these ions with a 
much higher number of false positives.  
 Interestingly, the top-scoring Mg2+ binding site predicted by 
FEATURE corresponds to a K+-binding site in the 1HC8 structure 
(*1162, accuracy 1.4 Å). MetalionRNA predicted this site at the 4th 
position of the ranking specific for K+ cations (accuracy 2.2 Å), 
with the three alternative predictions coinciding with the Mg2+ 
binding sites observed in the experimentally determined structure. 
Among the Mg2+ binding sites predicted by MetalionRNA, this K+ 
binding site is found at the 18th position in our ranking (accuracy 
1.7 Å). This partial overlap of predicted Mg2+ and K+-binding sites 
suggests that cations compete with each other for binding to the 
RNA molecule. MetalionRNA does not yet support simultaneous 
prediction of different ions and does not take the ion concentration 
into account. Such features will be implemented when the number 
of high-resolution RNA structures determined at a range of 
different ion concentrations (and with confidently assigned ions) 
reaches the level required for statistical significance of training and 
testing the knowledge-based potential. 
 

 
Fig. 4. Structure of the 23S rRNA fragment (PDB ID: 1HC8) with the 
experimentally determined positions of Mg2+ cations indicated by white 
labelled balls. Top-scoring Mg2+ cations predicted by MetalionRNA are 
shown as black balls. For detailed comparison of predicted and 
experimentally observed ions see Table 2. 

5 DISCUSSION 

 MetalionRNA is a novel tool for predicting metal ion binding 
sites in RNA structures. It uses an anisotropic statistical potential 
trained on a database of known structures. The current 
implementation is capable of making predictions for Mg2+, Na+ 
and K+ cations, and further ions will be added as the database of 
RNA structures is expected to grow. The five-fold cross-validation 
test proved that ions positions are predicted by MetalionRNA with 
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useful accuracy, as the method successfully reproduces the 
crystallographically determined positions of Mg2+, Na+, and K+ 
cations in dozens of different RNA molecules. A similar accuracy 
was achieved by the prediction of Mg2+ in DNA structures, which 
were not used for training, revealing that the general mechanism of 
ion binding by both types of the nucleic acids is sufficiently similar 
to be captured by a coarse-grained method such as ours. 
Comparison with another fully automated method FEATURE 
demonstrated that MetalionRNA can identify true Mg2+ sites in 
RNA structure with a relatively low rate of false positives, 
suggesting that it may be a practically useful tool.  

There are alternative approaches for predicting metal ion 
binding sites in RNA structures with high accuracy. Hermann and 
Westhof (1998) applied Brownian-dynamics (BD) simulations of 
cations diffusing under the influence of random Brownian motion 
within the electrostatic field to predict metal ion binding sites. 
Misra and Draper (2000) presented an analytical model based on 
the non-linear Poisson-Boltzmann (PB) equation that describes the 
energetic and stoichiometric linkage between the Mg2+ binding and 
RNA folding. Tan and Chen (2005, 2010) developed a statistical 
mechanical model based on the PB theory, which considers and 
ensemble of discrete ion distributions; it models electrostatics and 
steric interactions for tightly bound ions and uses the mean-field 
fluid model to describe the diffuse ions. The advantage of these 
methods is that they model the physico-chemistry of the system 
and therefore can be used to infer dynamic and thermodynamic 
parameters of the systems under study and its individual elements. 
An important feature of these and similar methods is the 
examination of the system under physical conditions defined by 
the user, such as temperature, concentration of different ions, 
possible presence of other molecules etc. These methods are, 
however, computationally very costly, and require specialized 
expertise to set up and run the simulations, and to interpret their 
results. The simulation methods are not available as ‘black box’ 
packages that can take an RNA structure as an input and generate 
defined positions of ions as an output. For these reasons, they 
cannot be used to make predictions for a large series of test 
structures. They serve different purpose than the automated 
predictive methods such as FEATURE or MetalionRNA and these 
two types of tools cannot be directly compared. The advantage of 
MetalionRNA is that it is relatively fast, can be accessed by a user 
friendly web interface, and does not require special skills to 
interpret the results. Ion sites predicted by MetalionRNA are 
ranked according to their score, which can be used to infer the 
relative order and strength of binding consecutive metal ions by the 
given RNA molecule e.g. with increasing ion concentration. 

MetalionRNA requires the three-dimensional structure of a 
nucleic acid as an input. However, predictions of ion-binding sites 
in nucleic acid structures may be validated experimentally with 
methods that do not require the experimental determination of 
nucleic acid structure. In particular, Fenton chemistry makes use of 
the ability of Fe2+ to replace Mg2+ and to generate highly reactive 
hydroxyl radicals that can cleave nucleic acid backbones in spatial 
proximity of the ion-binding site; the sites of cleavage can be then 
mapped with standard biochemical methods (Berens, et al., 1998). 
This and other methods of experimental determination of ion-
binding sites can be used in conjunction with MetalionRNA to 
model RNA structures in the more physically and biologically 
realistic ion-bound state. The next steps in the development of 
MetalionRNA will be to assess its ability to predict ion-binding 
sites in low-accuracy structures and to explore the possibilities of 

integrating the modelling of metal ions with software for 
automated RNA 3D structure modelling by comparative (Rother, et 
al., 2011) or de novo assembly approaches (Das and Baker, 2007). 
We also intend to explore the possibility to include the ion 
concentration as a parameter of the prediction, and to enable 
predictions for mixed solutions with different cations present 
simultaneously and potentially competing for similar binding sites. 

5.1 Conclusions 

We developed MetalionRNA, a novel bioinformatics tool for 
prediction of metal ion binding sites in RNA. The anisotropic 
potential in MetalionRNA outperforms the previously published 
FEATURE method based on a statistical approach. Our method can 
be used to assist crystal structure determination e.g. by identifying 
tentative metal ion sites to be further validated by comparison with 
experimental data or to propose metal positions for structural 
models that lack coordinates of cations, e.g. RNA structures 
determined by nuclear magnetic resonance (NMR) spectroscopy 
(Shen, et al., 1995) or theoretical models. MetalionRNA is freely 
available as a web server, at http://metalionrna.genesilico.pl/ and 
has a mirror at http://metalionrna.amu.edu.pl. 
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